If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x=125
We move all terms to the left:
x^2+40x-(125)=0
a = 1; b = 40; c = -125;
Δ = b2-4ac
Δ = 402-4·1·(-125)
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{21}}{2*1}=\frac{-40-10\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{21}}{2*1}=\frac{-40+10\sqrt{21}}{2} $
| 3f-19=2 | | 8z+12=84 | | +20=5y | | -24=z/(-4)+(-18) | | 8a=3a+26 | | 9=1/2(2x+8) | | 8s+20=s+27 | | 1x+2x=5000000000000000000000000000000000000000000000000000000x | | -3(r-98)=48 | | 2x-91=x-36 | | v/10+68=71 | | 2+3x-62=180 | | j-5.7/2=1.6 | | 6×+5y=18 | | 5w-79=w+1 | | 9c+17=107 | | 3b-11=5b-35 | | 24−5p=19 | | 5(x-1)=12.5 | | X+46+x+56+90=180 | | w+31/8=5 | | z+5.16/3=2.06 | | 85-10=1/8x | | 10c-19=8c-11 | | 3/7=h/14-2.7 | | 9f-1=80 | | -3w+7+-9=49 | | 23+5q=88 | | s/10+43=46 | | 4x+7+5x+7+76=180 | | -7+6y=47 | | 6p-49=8p-83 |